The Role of Stimulus Salience and Attentional Capture Across the Neural Hierarchy in a Stop-Signal Task
نویسندگان
چکیده
Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.
منابع مشابه
Attentional capture is contingent on the interaction between task demand and stimulus salience.
The aim of this research was to investigate the potential impacts of task demand and stimulus salience on the stimulus-driven attentional capture effect. The participants performed an inefficient visual search task while an irrelevant luminance singleton was present. In Experiment 1, the task demand was manipulated while the stimulus salience of the irrelevant singleton was fixed. With the same...
متن کاملTask-irrelevant stimulus salience affects visual search
The relative contributions of stimulus salience and task-related goals in guiding attention remain an issue of debate. Several studies have demonstrated that top-down factors play an important role, as they often override capture by salient irrelevant objects. However, Yantis and Egeth [Yantis, S., & Egeth, H. E. (1999). On the distinction between visual salience and stimulus-driven attentional...
متن کاملEffects of task relevance and stimulus-driven salience in feature-search mode.
Attentional allocation in feature-search mode (W. F. Bacon & H. E. Egeth, 1994) is thought to be solely determined by top-down factors, with no role for stimulus-driven salience. The authors reassessed this conclusion using variants of the spatial cuing and rapid serial visual presentation paradigms developed by C. L. Folk and colleagues (C. L. Folk, R. W. Remington, & J. C. Johnston, 1992; C. ...
متن کاملResponse Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm
Actions are informed by the complex interactions of response execution and inhibition networks. These networks integrate sensory information with internal states and behavioral goals to produce an appropriate action or to update an ongoing action. Recent investigations have shown that, behaviorally, attention is captured through a hierarchy of colors. These studies showed how the color hierarch...
متن کاملLearned Value Magnifies Salience-Based Attentional Capture
Visual attention is captured by physically salient stimuli (termed salience-based attentional capture), and by otherwise task-irrelevant stimuli that contain goal-related features (termed contingent attentional capture). Recently, we reported that physically nonsalient stimuli associated with value through reward learning also capture attention involuntarily (Anderson, Laurent, & Yantis, PNAS, ...
متن کامل